rulesample = {{{{1, 2, 1}, {3, 4, 2}} -> {{5, 6, 5}, {6, 7, 6}, {7, 4,
7}, {7, 1, 3}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 3, 2}, {2, 3, 7}, {2, 8, 5}, {
9, 1, 7}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 1, 2}, {3, 4, 5}} -> {{5, 5, 5}, {6, 5, 2}, {7, 1, 6}, {
8, 7, 3}}, {{0, 0, 0}, {0, 0, 0}},
66}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 6, 7}, {8, 6, 9}, {9, 6,
1}, {10, 2, 6}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {4, 5, 6}} -> {{2, 7, 2}, {8, 7, 2}, {5, 5,
9}, {5, 1, 10}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 6}} -> {{2, 7, 4}, {7, 8, 9}, {8, 1, 4}, {
3, 7, 5}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 2}, {3, 4, 5}} -> {{6, 5, 5}, {6, 7, 3}, {8, 6, 3}, {
6, 1, 9}}, {{0, 0, 0}, {0, 0, 0}},
63}, {{{1, 2, 3}, {4, 5, 3}} -> {{2, 5, 3}, {2, 1, 3}, {5, 6,
7}, {3, 8, 9}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 2}, {1, 3, 4}} -> {{5, 5, 5}, {1, 1, 5}, {5, 6, 7}, {
2, 2, 8}}, {{0, 0, 0}, {0, 0, 0}},
98}, {{{1, 2, 3}, {4, 5, 6}} -> {{2, 2, 7}, {7, 8, 6}, {9, 6,
7}, {3, 10, 9}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {3, 4, 5}} -> {{4, 6, 7}, {6, 5, 7}, {8, 5, 7}, {
6, 2, 8}}, {{0, 0, 0}, {0, 0, 0}},
12}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 3}, {7, 2, 3}, {5, 3,
4}, {8, 5, 3}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 3}, {1, 3, 7}, {2, 4, 8}, {
2, 9, 10}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 2, 4}, {4, 2, 3}, {8, 1, 2}, {
5, 6, 1}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 7, 7}, {2, 5, 6}, {6, 5, 8}, {
9, 2, 8}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 3, 6}, {7, 6, 4}, {8, 4, 2}, {
9, 2, 10}}, {{0, 0, 0}, {0, 0, 0}},
17}, {{{1, 2, 3}, {2, 4, 5}} -> {{1, 1, 6}, {1, 5, 7}, {4, 3,
1}, {8, 9, 2}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 7, 1}, {7, 6, 4}, {3, 3, 4}, {
2, 8, 5}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 7, 1}, {1, 2, 2}, {7, 8, 8}, {
6, 9, 4}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 6, 5}, {6, 7, 2}, {3, 7, 2}, {
6, 4, 3}}, {{0, 0, 0}, {0, 0, 0}},
50}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 7, 3}, {7, 2, 8}, {3, 4,
9}, {10, 1, 6}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {4, 2, 5}} -> {{3, 2, 6}, {5, 6, 2}, {4, 2, 7}, {
8, 1, 2}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 8, 1}, {7, 2, 9}, {3, 8, 5}, {
4, 6, 10}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 1, 2}, {3, 1, 4}} -> {{2, 1, 2}, {5, 2, 3}, {6, 5, 7}, {
7, 3, 6}}, {{0, 0, 0}, {0, 0, 0}},
66}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 7, 6}, {6, 5, 1}, {3, 1,
1}, {8, 2, 3}}, {{0, 0, 0}, {0, 0, 0}},
19}, {{{1, 2, 1}, {3, 4, 5}} -> {{6, 6, 1}, {2, 6, 4}, {4, 5,
5}, {7, 2, 2}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 5, 3}} -> {{1, 1, 6}, {2, 6, 3}, {7, 3, 7}, {
1, 8, 4}}, {{0, 0, 0}, {0, 0, 0}},
36}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 2, 2}, {2, 7, 8}, {7, 4,
3}, {1, 6, 5}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {1, 3, 4}} -> {{4, 5, 4}, {4, 6, 7}, {6, 8, 4}, {
1, 7, 5}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {4, 3, 5}} -> {{6, 5, 2}, {6, 1, 7}, {5, 7, 8}, {
8, 9, 1}}, {{0, 0, 0}, {0, 0, 0}},
65}, {{{1, 2, 3}, {4, 2, 5}} -> {{1, 6, 5}, {1, 6, 7}, {8, 6,
9}, {8, 10, 1}}, {{0, 0, 0}, {0, 0, 0}},
18}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 3, 2}, {3, 3, 7}, {8, 6,
2}, {1, 5, 7}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 7, 3}, {5, 7, 3}, {3, 8, 6}, {
1, 7, 6}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{2, 2, 2}, {7, 8, 7}, {7, 8, 1}, {
4, 5, 1}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 3}} -> {{3, 3, 1}, {6, 3, 7}, {8, 1, 6}, {
3, 9, 4}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {2, 4, 5}} -> {{3, 1, 6}, {1, 7, 6}, {8, 9, 3}, {
8, 10, 6}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 7, 5}, {7, 8, 3}, {9, 3,
2}, {10, 5, 11}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 5, 6}} -> {{2, 7, 7}, {6, 8, 7}, {6, 1, 9}, {
10, 11, 1}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {2, 4, 5}} -> {{1, 6, 1}, {4, 6, 5}, {5, 7, 8}, {
2, 5, 9}}, {{0, 0, 0}, {0, 0, 0}},
8}, {{{1, 2, 3}, {4, 2, 5}} -> {{6, 2, 3}, {2, 6, 7}, {3, 8, 6}, {
9, 2, 5}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {4, 3, 5}} -> {{5, 2, 2}, {5, 6, 2}, {7, 6, 2}, {
1, 8, 3}}, {{0, 0, 0}, {0, 0, 0}},
79}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 3, 7}, {6, 3, 6}, {6, 1,
3}, {2, 7, 1}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {1, 4, 5}} -> {{2, 4, 4}, {1, 6, 4}, {7, 6, 5}, {
5, 3, 8}}, {{0, 0, 0}, {0, 0, 0}},
8}, {{{1, 2, 3}, {4, 3, 5}} -> {{6, 6, 7}, {7, 7, 4}, {5, 5, 4}, {
6, 8, 5}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 7, 8}, {7, 6, 1}, {5, 1, 6}, {
9, 1, 4}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 2}, {3, 4, 5}} -> {{5, 6, 6}, {5, 6, 2}, {4, 6, 7}, {
3, 4, 1}}, {{0, 0, 0}, {0, 0, 0}},
35}, {{{1, 2, 1}, {1, 3, 4}} -> {{5, 1, 5}, {5, 6, 7}, {8, 5,
2}, {9, 2, 7}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 7, 1}, {8, 7, 8}, {1, 9,
3}, {3, 6, 5}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 5}, {5, 8, 9}, {1, 3,
10}, {4, 8, 11}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {1, 4, 5}} -> {{6, 2, 2}, {5, 7, 6}, {8, 9, 5}, {
8, 1, 7}}, {{0, 0, 0}, {0, 0, 0}},
65}, {{{1, 2, 1}, {2, 3, 4}} -> {{1, 5, 3}, {5, 3, 6}, {7, 8,
1}, {4, 8, 3}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 1, 4}, {4, 1, 4}, {4, 3, 7}, {
2, 5, 8}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 1, 2}, {3, 4, 5}} -> {{6, 6, 5}, {4, 6, 1}, {7, 6, 8}, {
3, 1, 9}}, {{0, 0, 0}, {0, 0, 0}},
30}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 7, 5}, {7, 3, 6}, {4, 3,
8}, {1, 8, 2}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 7, 2}, {4, 7, 1}, {1, 6, 2}, {
5, 8, 3}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 2, 7}, {3, 8, 7}, {4, 3, 6}, {
1, 9, 10}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 8, 3}, {8, 6, 7}, {9, 8, 2}, {
4, 10, 8}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 7, 6}, {2, 7, 8}, {5, 6, 1}, {
4, 9, 8}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 8, 3}, {8, 6, 9}, {1, 3, 2}, {
2, 9, 10}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {3, 4, 5}} -> {{5, 6, 2}, {6, 2, 7}, {8, 2, 9}, {
3, 1, 6}}, {{0, 0, 0}, {0, 0, 0}},
26}, {{{1, 2, 3}, {4, 2, 5}} -> {{1, 6, 6}, {7, 8, 6}, {5, 9,
7}, {10, 9, 8}}, {{0, 0, 0}, {0, 0, 0}},
65}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 6}, {6, 4, 3}, {4, 5,
2}, {5, 8, 9}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 8, 3}, {8, 9, 7}, {10, 9,
3}, {1, 10, 7}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {1, 4, 5}} -> {{2, 6, 7}, {7, 6, 5}, {2, 4, 1}, {
8, 5, 9}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {2, 4, 5}} -> {{2, 3, 3}, {2, 5, 3}, {5, 4,
6}, {6, 4, 1}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 2, 7}, {3, 2, 8}, {3, 4, 2}, {
7, 1, 2}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 3, 5}} -> {{6, 2, 1}, {1, 3, 2}, {7, 2, 8}, {
5, 1, 7}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 7, 1}, {1, 3, 3}, {2, 6, 7}, {
2, 8, 3}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 2, 5}} -> {{1, 6, 7}, {1, 6, 8}, {3, 7, 9}, {
3, 10, 4}}, {{0, 0, 0}, {0, 0, 0}},
17}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 7, 8}, {7, 9, 2}, {1, 5,
2}, {4, 6, 1}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 2, 5}} -> {{2, 2, 6}, {2, 7, 3}, {7, 8, 2}, {
7, 1, 5}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 4}, {3, 7, 8}, {2, 4, 6}, {
5, 9, 4}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 3, 5}} -> {{6, 6, 7}, {8, 7, 9}, {5, 9, 6}, {
6, 10, 1}}, {{0, 0, 0}, {0, 0, 0}},
65}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 1, 8}, {1, 6, 2}, {9, 6,
10}, {11, 12, 2}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 5, 3}} -> {{6, 7, 8}, {7, 8, 1}, {6, 3, 9}, {
10, 11, 9}}, {{0, 0, 0}, {0, 0, 0}},
65}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 8, 7}, {9, 1, 8}, {1, 3,
10}, {3, 5, 11}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 1}, {3, 1, 4}} -> {{5, 1, 5}, {6, 5, 7}, {2, 7, 5}, {
2, 8, 9}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 4, 3}, {4, 5, 2}, {7, 8,
5}, {9, 7, 8}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 3}} -> {{2, 5, 2}, {4, 5, 3}, {6, 7, 5}, {
1, 8, 7}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 2}, {7, 8, 9}, {3, 10,
6}, {6, 9, 1}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 1}, {3, 4, 5}} -> {{3, 2, 1}, {2, 4, 3}, {1, 6, 7}, {
8, 2, 9}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 3, 5}} -> {{6, 3, 5}, {6, 5, 2}, {4, 3, 7}, {
8, 1, 4}}, {{0, 0, 0}, {0, 0, 0}},
8}, {{{1, 2, 3}, {3, 4, 5}} -> {{6, 6, 1}, {1, 7, 1}, {5, 1, 8}, {
9, 8, 9}}, {{0, 0, 0}, {0, 0, 0}},
66}, {{{1, 2, 1}, {3, 4, 5}} -> {{4, 6, 1}, {4, 1, 3}, {6, 3,
1}, {2, 7, 5}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {3, 4, 5}} -> {{3, 3, 5}, {6, 7, 5}, {6, 8, 1}, {
4, 1, 2}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {3, 4, 5}} -> {{6, 6, 1}, {1, 2, 7}, {2, 1, 8}, {
1, 4, 9}}, {{0, 0, 0}, {0, 0, 0}},
66}, {{{1, 2, 3}, {3, 4, 5}} -> {{6, 7, 7}, {6, 8, 5}, {9, 8,
8}, {10, 7, 9}}, {{0, 0, 0}, {0, 0, 0}},
65}, {{{1, 2, 3}, {1, 4, 5}} -> {{6, 2, 2}, {6, 5, 3}, {3, 7,
5}, {4, 8, 7}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {4, 5, 3}} -> {{6, 6, 1}, {6, 7, 8}, {1, 9, 7}, {
10, 10, 2}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 7, 1}, {7, 8, 3}, {6, 3,
9}, {10, 6, 1}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{2, 7, 2}, {7, 5, 1}, {8, 3, 5}, {
8, 3, 6}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {3, 4, 5}} -> {{5, 5, 4}, {5, 6, 7}, {7, 3, 4}, {
3, 8, 5}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {1, 4, 5}} -> {{3, 6, 1}, {1, 7, 4}, {5, 4, 8}, {
8, 9, 10}}, {{0, 0, 0}, {0, 0, 0}},
11}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 6, 5}, {6, 5, 7}, {8, 5,
8}, {8, 3, 9}}, {{0, 0, 0}, {0, 0, 0}},
66}, {{{1, 2, 2}, {3, 4, 5}} -> {{6, 5, 5}, {5, 7, 1}, {8, 6,
9}, {3, 2, 7}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 1, 6}, {6, 6, 7}, {1, 8,
4}, {9, 7, 10}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 1, 2}, {3, 4, 5}} -> {{6, 7, 6}, {2, 7, 3}, {2, 3, 5}, {
2, 1, 6}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 2, 5}} -> {{6, 3, 4}, {4, 7, 6}, {3, 5, 7}, {
2, 7, 8}}, {{0, 0, 0}, {0, 0, 0}},
34}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 7, 8}, {7, 4, 8}, {1, 5,
9}, {8, 10, 11}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 2, 2}, {8, 4, 2}, {6, 4, 9}, {
3, 1, 4}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {1, 4, 5}} -> {{6, 7, 6}, {6, 8, 9}, {3, 9, 5}, {
10, 11, 9}}, {{0, 0, 0}, {0, 0, 0}},
49}, {{{1, 2, 3}, {4, 5, 6}} -> {{3, 3, 5}, {3, 2, 7}, {8, 3,
7}, {8, 2, 1}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 8}, {7, 6, 8}, {9, 3, 8}, {
7, 5, 4}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {3, 4, 5}} -> {{3, 3, 6}, {3, 6, 7}, {8, 3, 9}, {
2, 8, 3}}, {{0, 0, 0}, {0, 0, 0}},
9}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 7, 3}, {3, 8, 2}, {8, 9, 3}, {
1, 2, 2}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{2, 7, 7}, {7, 8, 1}, {1, 6, 9}, {
4, 10, 10}}, {{0, 0, 0}, {0, 0, 0}},
6}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 3}, {3, 1, 2}, {4, 1, 6}, {
8, 2, 9}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 1}, {3, 4, 5}} -> {{3, 1, 3}, {1, 6, 7}, {7, 2, 3}, {
8, 2, 7}}, {{0, 0, 0}, {0, 0, 0}},
74}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 3, 3}, {3, 8, 9}, {6, 4,
2}, {1, 2, 10}}, {{0, 0, 0}, {0, 0, 0}},
4}, {{{1, 2, 3}, {4, 5, 6}} -> {{7, 2, 7}, {7, 1, 1}, {1, 5, 2}, {
8, 8, 5}}, {{0, 0, 0}, {0, 0, 0}},
7}, {{{1, 2, 3}, {2, 4, 5}} -> {{6, 1, 6}, {1, 5, 4}, {5, 2, 4}, {
7, 3, 2}}, {{0, 0, 0}, {0, 0, 0}},
5}, {{{1, 2, 3}, {4, 5, 6}} -> {{1, 1, 6}, {7, 8, 6}, {9, 4, 9}, {
3, 10, 4}}, {{0, 0, 0}, {0, 0, 0}}, 5}};
GraphicsGrid[
Partition[
ParallelMap[
ResourceFunction["WolframModelPlot"][
ResourceFunction["WolframModel"][#[[1]], #[[2]], #[[3]] - 1,
"FinalState"]] &, rulesample], 14], ImageSize -> Full]
And even though there are only 3 relations on the right-hand side (rather than the 4 in 22 42) these rules can produce globular structures. Some examples are:
This rule progressively builds up a structure by growing only in one place at a time (the position of the surviving self-loop):
After 1000 steps the rule has produced this structure containing 1000 ternary relations (plus the 2 already present in the initial condition):
Note the presence here of regions of square grids. These occur even more prominently in the rule
As we will discuss in the next section, the grid here becomes quite explicit when the hypergraph is rendered in 3D. Notice that the grid is not evident even after 20 steps in the evolution of the rule; it takes longer to emerge:
Once again, though, the rule adds just a single relation at each generation; in effect the grid is being “knitted” one node at a time.
Once again, the “knitting” of this form is far from obvious in the first 20 steps of evolution:
The pictures below show additional examples. Note that—as we will discuss later—many of the patterns here are best visualized in 3D.