We have formulated our models in terms of the rewriting of collections of relations between elements. And in this formulation, we might represent a state in one of our models as a list of (here 3-ary) relations
One possibility to consider is ordinary graphs. If we are dealing only with binary relations, then our models are immediately equivalent to transformations of directed graphs.
In terms of hypergraphs, the result of 5 and 10 steps of evolution according to this rule is
In thinking about ordinary graphs, it is natural also to consider the undirected case. And indeed—as was done extensively in [1:9]—it is possible to study many of the same things we do here with our models also in the context of undirected graphs. However, transformations of undirected graphs lack some of the flexibility and generality that exist in our models based on directed hypergraphs.
It is straightforward to convert from a system described in terms of undirected graphs to one described using our models: just represent each edge in the undirected graph as a pair of directed binary hyperedges, as in:
It is particularly easy to get intricate nested structures from rules based on undirected trivalent graphs; it is considerably more difficult to get more complex behavior:
Another issue in models based on undirected graphs has to do with the fact that the objects that appear in their transformation rules do not have exactly the same character as the objects on which they act. In our hypergraph-based models, both sides of a transformation are collections of relations (that can be represented by hypergraphs)—just like what appears in the states on which these transformations act. But in models based on undirected graphs, what appears in a transformation is not an ordinary graph: instead it is a subgraph with “dangling connections” (or “half-edges”) that must be matched up with part of the graph on which the transformation acts.
(In a sense, the issue is that while our models are based on applying rules to collections of complete hyperedges, models based on undirected graphs effectively apply rules to collections of nodes, requiring “dangling connections” to be treated separately.)
Another apparent problem with undirected trivalent graphs is that if the right-hand side of a transformation has lower symmetry than the left-hand side, as in
then it can seem “undefined” how the right-hand side should be inserted into the final graph. Having seen our models here, however, it is now clear that this is just one of many examples where multiple different updates can be applied, as represented by multiway systems.
A further issue with systems based on undirected trivalent graphs has to do with the enumeration of possible states and possible rules. If a graph is represented by pairs of vertices corresponding to edges, as in
the fact that the graph is trivalent in a sense corresponds to a global constraint that each vertex must appear exactly three times. The alternate “vertex-based” representation
does not overcome this issue. In our models based on collections of relations, however, there are no such global constraints, and enumeration of possible states—and rules—is straightforward. (In our models, as in trivalent undirected graphs, there is, however, still the issue of canonicalization.)
as well as rules for transforming them, and indeed to build up a rich analysis of their behavior [1:9.12]. Notions such as causal invariance are also immediately applicable, and for example one finds that the simplest subgraphs that do not overlap themselves, and so guarantee causal invariance, are [1:p515][87]:
Graph[#, EdgeStyle ->
ResourceFunction["WolframPhysicsProjectStyleData"]["GenericGraph",
"EdgeStyle"]] & /@ {
Graph[{1, 2, 5, 3, 6, 4}, {
Null, {{1, 2}, {1, 3}, {3, 5}, {1, 4}, {4, 5}, {4, 6}, {6, 3}, {6,
5}}}, {FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{5, -2}, {5, -1}, {6, -3}, {4, -3}, {
5, -3}, {5, -4}}}],
Graph[{1, 2, 3, 6, 4, 7, 5, 8}, {
Null, {{1, 2}, {1, 4}, {7, 4}, {7, 8}, {1, 3}, {3, 4}, {2, 5}, {5,
7}, {2, 6}, {3, 6}, {5, 6}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{6, -3}, {3, -3}, {5, -2}, {6, -1}, {
3, -1}, {4, -2}, {4.5, -1}, {4.5, 0}}}],
Graph[{1, 2, 3, 6, 4, 7, 5, 8}, {
Null, {{1, 2}, {1, 4}, {7, 4}, {1, 3}, {3, 4}, {2, 5}, {5, 7}, {5,
8}, {2, 6}, {3, 6}, {7, 6}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{4, -4}, {4, -1}, {5, -3}, {6, -4}, {
5, -1}, {5, -2}, {6, -1}, {5, 0}}}],
Graph[{1, 2, 5, 3, 4, 7, 8, 6}, {
Null, {{1, 2}, {1, 3}, {3, 8}, {8, 7}, {1, 4}, {4, 3}, {4, 5}, {5,
7}, {5, 6}, {8, 6}, {6, 7}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{5, -1}, {5, 0}, {6, -2}, {4, -2}, {
4, -3}, {5, -3}, {5, -4}, {6, -3}}}],
Graph[{1, 2, 6, 8, 3, 7, 4, 5}, {
Null, {{1, 2}, {1, 3}, {8, 3}, {1, 4}, {2, 5}, {5, 8}, {5, 7}, {7,
3}, {2, 6}, {7, 6}, {8, 6}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{5, -1}, {6, -1}, {4, -1}, {5, 0}, {
6, -4}, {5, -2}, {5, -3}, {4, -4}}}],
Graph[{1, 2, 3, 4, 5, 9, 6, 10, 7, 8}, {
Null, {{1, 2}, {5, 7}, {10, 8}, {2, 3}, {3, 5}, {2, 4}, {4, 7}, {4,
8}, {3, 6}, {10, 6}, {6, 8}, {5, 9}, {7, 9}, {9, 10}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{3, 6}, {3, 5}, {1, 4}, {5, 4}, {2, 3}, {2,
0}, {4, 3}, {4, 0}, {3, 2}, {3, 1}}}],
Graph[{1, 2, 3, 4, 5, 6}, {
Null, {{1, 2}, {2, 5}, {1, 3}, {3, 6}, {1, 4}, {2, 4}, {3, 4}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{2, 0}, {3, 1}, {1, 1}, {2, 2}, {4, 1}, {0,
1}}}],
Graph[{1, 2, 3, 7, 4, 6, 5, 8}, {
Null, {{2, 6}, {1, 2}, {7, 6}, {7, 8}, {1, 3}, {3, 6}, {2, 5}, {3,
5}, {5, 7}, {1, 4}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{1, 1}, {2, 2}, {2, 0}, {0, 1}, {3, 0}, {3,
2}, {4, 1}, {5, 1}}}],
Graph[{1, 2, 5, 6, 3, 4, 7, 8}, {
Null, {{2, 4}, {1, 2}, {1, 4}, {1, 3}, {3, 8}, {2, 5}, {5, 6}, {6,
3}, {6, 4}, {5, 7}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{3, 0}, {1, 0}, {3, 1}, {2, 1}, {1, 1}, {2,
2}, {0, 1}, {4, 1}}}],
Graph[{1, 2, 5, 7, 6, 3, 4, 8}, {
Null, {{2, 5}, {1, 2}, {1, 3}, {2, 3}, {6, 5}, {6, 8}, {6, 7}, {7,
3}, {7, 5}, {1, 4}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{1, 1}, {2, 2}, {2, 0}, {0, 1}, {3, 2}, {4,
1}, {3, 0}, {5, 1}}}],
Graph[{1, 2, 3, 9, 4, 8, 7, 5, 6, 10}, {
Null, {{1, 2}, {9, 10}, {2, 6}, {8, 6}, {1, 3}, {3, 6}, {2, 5}, {5,
8}, {5, 9}, {1, 4}, {3, 7}, {8, 7}, {9, 7}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{1, 1}, {2, 2}, {2, 0}, {0, 1}, {5, 2}, {3,
1}, {5, 0}, {4, 1}, {6, 1}, {7, 1}}}],
Graph[{1, 2, 5, 4, 3, 7, 9, 6, 10, 8}, {
Null, {{1, 2}, {8, 9}, {1, 3}, {10, 9}, {5, 3}, {1, 4}, {4, 3}, {5,
7}, {8, 7}, {7, 9}, {5, 6}, {4, 6}, {8, 6}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{5, 1}, {6, 1}, {4, 0}, {4, 2}, {3, 0}, {3,
2}, {2, 0}, {2, 2}, {1, 1}, {0, 1}}}],
Graph[{1, 2, 5, 8, 3, 4, 7, 9, 6, 10}, {
Null, {{1, 2}, {9, 10}, {1, 3}, {2, 3}, {3, 9}, {1, 4}, {2, 4}, {5,
6}, {6, 4}, {5, 8}, {5, 7}, {6, 7}, {9, 7}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{2, 1}, {3, 2}, {3, 1}, {2, 2}, {1, 0}, {1,
1}, {2, 0}, {0, 0}, {3, 0}, {4, 0}}}],
Graph[{1, 2, 7, 8, 3, 4, 9, 5, 6, 10}, {
Null, {{1, 2}, {9, 10}, {8, 9}, {1, 4}, {8, 4}, {2, 5}, {5, 6}, {6,
8}, {6, 4}, {5, 7}, {1, 3}, {2, 3}, {9, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{3, 2}, {2, 3}, {4, 3}, {3, 1}, {1, 1}, {2,
0}, {0, 1}, {4, 0}, {5, 2}, {6, 2}}}],
Graph[{1, 2, 7, 8, 3, 4, 9, 5, 6, 10}, {
Null, {{1, 2}, {8, 9}, {8, 10}, {1, 4}, {2, 4}, {9, 4}, {2, 5}, {5,
6}, {6, 8}, {5, 7}, {1, 3}, {6, 3}, {9, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{2, 2}, {3, 3}, {2, 1}, {1, 3}, {3, 0}, {2,
0}, {4, 0}, {1, 0}, {1, 1}, {0, 0}}}],
Graph[{1, 2, 7, 8, 3, 9, 4, 5, 6, 10}, {
Null, {{1, 2}, {8, 9}, {8, 10}, {1, 4}, {9, 4}, {2, 5}, {5, 4}, {5,
7}, {7, 8}, {2, 6}, {1, 3}, {7, 3}, {9, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{4, 0}, {3, 1}, {1, 0}, {4, 4}, {3, 2}, {5,
1}, {2, 2}, {2, 3}, {1, 4}, {0, 3}}}],
Graph[{1, 2, 7, 8, 5, 3, 4, 9, 6, 10}, {
Null, {{1, 2}, {9, 10}, {2, 5}, {5, 9}, {1, 4}, {2, 4}, {6, 7}, {7,
5}, {7, 4}, {6, 8}, {1, 3}, {6, 3}, {9, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{3, 1}, {2, 2}, {3, 0}, {4, 2}, {2, 3}, {5,
1}, {4, 3}, {6, 1}, {1, 1}, {0, 1}}}],
Graph[{1, 2, 7, 8, 5, 9, 3, 4, 10, 6}, {
Null, {{1, 2}, {2, 5}, {5, 10}, {1, 4}, {10, 4}, {7, 9}, {7, 8}, {
8, 5}, {8, 4}, {2, 6}, {1, 3}, {7, 3}, {10, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{2, 0}, {1, 2}, {4, 0}, {3, 1}, {2, 4}, {0,
2}, {5, 2}, {4, 4}, {6, 2}, {3, 3}}}],
Graph[{1, 2, 7, 8, 3, 4, 5, 9, 6, 10}, {
Null, {{1, 2}, {9, 10}, {7, 9}, {1, 4}, {2, 4}, {7, 4}, {5, 7}, {5,
6}, {6, 9}, {5, 8}, {1, 3}, {2, 3}, {6, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{2, 2}, {4, 2}, {3, 3}, {3, 1}, {5, 2}, {3,
4}, {3, 0}, {6, 2}, {1, 2}, {0, 2}}}],
Graph[{1, 2, 7, 9, 3, 4, 8, 5, 6, 10}, {
Null, {{1, 2}, {8, 9}, {8, 10}, {9, 7}, {2, 5}, {5, 7}, {5, 6}, {6,
8}, {6, 7}, {1, 4}, {1, 3}, {2, 3}, {9, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{5, 1}, {4, 2}, {4, 0}, {6, 1}, {3, 2}, {2,
2}, {3, 1}, {1, 1}, {2, 0}, {0, 1}}}],
Graph[{1, 2, 7, 9, 3, 8, 4, 5, 6, 10}, {
Null, {{1, 2}, {8, 9}, {8, 10}, {2, 6}, {9, 6}, {2, 5}, {5, 6}, {5,
7}, {7, 8}, {1, 4}, {1, 3}, {7, 3}, {9, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{4, 2}, {2, 3}, {3, 0}, {5, 2}, {1, 2}, {3,
2}, {1, 1}, {1, 0}, {3, 1}, {0, 0}}}],
Graph[{1, 2, 7, 9, 5, 8, 3, 4, 10, 6}, {
Null, {{1, 2}, {2, 5}, {5, 10}, {2, 6}, {10, 6}, {7, 9}, {7, 8}, {
8, 5}, {8, 6}, {1, 4}, {1, 3}, {7, 3}, {10, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{1, 0}, {1, 3}, {3, 0}, {0, 0}, {4, 2}, {2,
2}, {5, 0}, {5, 1}, {6, 0}, {3, 1}}}],
Graph[{1, 2, 7, 9, 8, 3, 4, 5, 6, 10}, {
Null, {{1, 2}, {8, 9}, {8, 10}, {2, 5}, {9, 5}, {6, 8}, {6, 5}, {6,
7}, {7, 9}, {1, 4}, {1, 3}, {2, 3}, {7, 3}}}, {
FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{1, 0}, {2, 0}, {1, 1}, {0, 0}, {4, 1}, {2,
1}, {2, 3}, {3, 2}, {4, 3}, {5, 2}}}],
Graph[{1, 2, 7, 10, 9, 3, 4, 11, 8, 5, 6, 12}, {
Null, {{1, 2}, {1, 4}, {10, 11}, {10, 12}, {10, 9}, {11, 9}, {6,
8}, {6, 7}, {7, 9}, {2, 5}, {6, 5}, {11, 5}, {1, 3}, {2, 3}, {7,
3}}}, {FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{2.5, 5}, {3, 4}, {2, 4}, {2.5, 6}, {4,
3}, {4.5, 1}, {1, 3}, {6, 0}, {1, 2}, {0.5, 1}, {1.5, 1}, {-1,
0}}}],
Graph[{1, 2, 8, 10, 3, 9, 4, 5, 11, 6, 7, 12}, {
Null, {{1, 2}, {1, 4}, {8, 10}, {1, 3}, {10, 3}, {2, 5}, {5, 7}, {
7, 8}, {7, 9}, {2, 6}, {5, 6}, {10, 6}, {8, 11}, {11, 3}, {11,
12}}}, {FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{1, 2}, {2.5, 1}, {1.5, 4}, {-1, 0}, {
3.5, 1}, {3, 2}, {5, 2}, {4.5, 4}, {7, 0}, {3, 3}, {3, 5}, {3,
7}}}],
Graph[{1, 2, 8, 10, 7, 9, 3, 4, 11, 5, 6, 12}, {
Null, {{1, 2}, {1, 4}, {10, 11}, {10, 12}, {1, 3}, {10, 3}, {7,
3}, {7, 9}, {7, 8}, {2, 6}, {8, 6}, {11, 6}, {2, 5}, {8, 5}, {11,
5}}}, {FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{1, 2}, {2, 1}, {2, 3}, {0, 0}, {3, 0.5}, {
2, 2}, {4, 3}, {4, 2}, {3, 4}, {5, 2}, {4, 1}, {6, 0}}}],
Graph[{1, 2, 3, 10, 4, 8, 6, 9, 5, 11, 7, 12}, {
Null, {{1, 2}, {1, 4}, {9, 10}, {2, 6}, {1, 3}, {3, 7}, {2, 5}, {5,
9}, {5, 6}, {3, 8}, {9, 8}, {7, 8}, {7, 11}, {11, 6}, {11,
12}}}, {FormatType -> TraditionalForm, ImageSize -> {50, 50},
GraphLayout -> {"Dimension" -> 2}, ImageSize -> {50, 50},
VertexCoordinates -> {{3.5, 4.5}, {2.5, 4}, {4.5, 4}, {3.5,
5.5}, {3, 3}, {2, 3}, {4, 3}, {5, 3}, {4.5, 2}, {6, 1}, {
2.5, 2}, {1, 1}}}]}
In the context of our models, an ordered trivalent graph can immediately be represented as a hypergraph with ternary hyperedges corresponding to the trivalent nodes, and binary hyperedges corresponding to the edges that connect these nodes:
To give rules for ordered trivalent graphs, one must specify how to transform subgraphs with “dangling connections”. Given the rule (where letters represent dangling connections)
Even though there is a direct translation between ordered trivalent graphs and our models, what is considered a simple rule (for example for purposes of enumeration) is different in the two cases. And while it is more difficult to find valid rules with ordered trivalent graphs, it is notable that even some of the very simplest such rules generate structures with limiting manifold features that we see only after exploring thousands of rules in our models:
$rewritesOrdered24h4 = {OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 8}, {
h[2], 12, 1}, {
h[4], 3, 10}, {9,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 8}, {
h[4], 12, 1}, {
h[2], 3, 10}, {9,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2], 8}, {
h[1], 12, 1}, {
h[3], 3, 10}, {9,
h[4], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4], 8}, {
h[1], 12, 1}, {
h[3], 3, 10}, {9,
h[2], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 7}, {12, 1,
h[2]}, {3, 10,
h[4]}, {8,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 7}, {12, 1,
h[4]}, {3, 10,
h[2]}, {8,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2], 7}, {12, 1,
h[1]}, {3, 10,
h[3]}, {8,
h[4], 4}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4], 7}, {12, 1,
h[1]}, {3, 10,
h[3]}, {8,
h[2], 4}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 7}, {1,
h[3], 10}, {3, 11,
h[2]}, {6, 8,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 7}, {1,
h[3], 10}, {3, 11,
h[4]}, {6, 8,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2], 7}, {1,
h[4], 10}, {3, 11,
h[1]}, {6, 8,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4], 7}, {1,
h[2], 10}, {3, 11,
h[1]}, {6, 8,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[1]}, {
h[2], 1, 11}, {
h[4], 10, 2}, {8, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[1]}, {
h[4], 1, 11}, {
h[2], 10, 2}, {8, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[2]}, {
h[1], 1, 11}, {
h[3], 10, 2}, {8, 6,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[4]}, {
h[1], 1, 11}, {
h[3], 10, 2}, {8, 6,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 8,
h[1]}, {1, 11,
h[2]}, {10, 2,
h[3]}, {7, 5,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 8,
h[1]}, {1, 11,
h[2]}, {10, 2,
h[4]}, {7, 5,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 8,
h[1]}, {1, 11,
h[3]}, {10, 2,
h[2]}, {7, 5,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 8,
h[1]}, {1, 11,
h[4]}, {10, 2,
h[2]}, {7, 5,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 8,
h[1]}, {1, 11,
h[3]}, {10, 2,
h[4]}, {7, 5,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 8,
h[1]}, {1, 11,
h[4]}, {10, 2,
h[3]}, {7, 5,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 9,
h[1]}, {1, 12,
h[3]}, {
h[2], 11, 2}, {
h[4], 8, 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 9,
h[1]}, {1, 12,
h[3]}, {
h[4], 11, 2}, {
h[2], 8, 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 9,
h[2]}, {1, 12,
h[4]}, {
h[1], 11, 2}, {
h[3], 8, 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4, 9,
h[4]}, {1, 12,
h[2]}, {
h[1], 11, 2}, {
h[3], 8, 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1,
h[3], 11}, {10, 3,
h[2]}, {7, 6,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1,
h[3], 11}, {10, 3,
h[4]}, {7, 6,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2], 8}, {1,
h[4], 11}, {10, 3,
h[1]}, {7, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4], 8}, {1,
h[2], 11}, {10, 3,
h[1]}, {7, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[1]}, {10, 1,
h[2]}, {11, 2,
h[3]}, {4, 7,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[1]}, {10, 1,
h[4]}, {11, 2,
h[3]}, {4, 7,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[2]}, {10, 1,
h[1]}, {11, 2,
h[4]}, {4, 7,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[4]}, {10, 1,
h[1]}, {11, 2,
h[2]}, {4, 7,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[2], 11, 1}, {12, 2,
h[3]}, {
h[4], 5, 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[4], 11, 1}, {12, 2,
h[3]}, {
h[2], 5, 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[2]}, {
h[1], 11, 1}, {12, 2,
h[4]}, {
h[3], 5, 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[4]}, {
h[1], 11, 1}, {12, 2,
h[2]}, {
h[3], 5, 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1, 12,
h[2]}, {10, 3,
h[4]}, {7,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1, 12,
h[4]}, {10, 3,
h[2]}, {7,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2], 8}, {1, 12,
h[1]}, {10, 3,
h[3]}, {7,
h[4], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4], 8}, {1, 12,
h[1]}, {10, 3,
h[3]}, {7,
h[2], 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 7}, {12,
h[2], 1}, {3,
h[4], 10}, {9,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 7}, {12,
h[4], 1}, {3,
h[2], 10}, {9,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 7,
h[1]}, {11, 1,
h[2]}, {2, 10,
h[4]}, {8, 4,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 7,
h[1]}, {11, 1,
h[4]}, {2, 10,
h[2]}, {8, 4,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[2], 11, 1}, {
h[4], 2, 10}, {9, 5,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[4], 11, 1}, {
h[2], 2, 10}, {9, 5,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[2]}, {
h[1], 11, 1}, {
h[3], 2, 10}, {9, 5,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[4]}, {
h[1], 11, 1}, {
h[3], 2, 10}, {9, 5,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 8}, {
h[2], 12, 2}, {
h[4], 3, 11}, {
h[3], 9, 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 8}, {
h[4], 12, 2}, {
h[2], 3, 11}, {
h[3], 9, 5}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[2]}, {7, 8, 1}, {4, 5, 10}, {9,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[4]}, {7, 8, 1}, {4, 5, 10}, {9,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2],
h[1]}, {7, 8, 1}, {4, 5, 10}, {9,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4],
h[1]}, {7, 8, 1}, {4, 5, 10}, {9,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[2]}, {7, 8, 2}, {4, 5, 11}, {
h[3], 9,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[4]}, {7, 8, 2}, {4, 5, 11}, {
h[3], 9,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 6,
h[1]}, {7, 8, 2}, {4, 5, 11}, {
h[4], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 6,
h[1]}, {7, 8, 2}, {4, 5, 11}, {
h[2], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 5}, {9, 3, 7}, {6, 12, 4}, {
h[3],
h[4], 8}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 5}, {9, 3, 7}, {6, 12, 4}, {
h[3],
h[2], 8}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 5}, {9, 3, 7}, {6, 12, 4}, {
h[4],
h[3], 8}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 5}, {9, 3, 7}, {6, 12, 4}, {
h[2],
h[3], 8}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 4}, {3, 9, 8}, {12, 6, 5}, {
h[3],
h[4], 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 4}, {3, 9, 8}, {12, 6, 5}, {
h[3],
h[2], 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 4}, {3, 9, 8}, {12, 6, 5}, {
h[4],
h[3], 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 4}, {3, 9, 8}, {12, 6, 5}, {
h[2],
h[3], 7}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[2]}, {9, 1, 7}, {6, 10, 4}, {8,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[4]}, {9, 1, 7}, {6, 10, 4}, {8,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2],
h[1]}, {9, 1, 7}, {6, 10, 4}, {8,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4],
h[1]}, {9, 1, 7}, {6, 10, 4}, {8,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[2]}, {8, 7, 1}, {5, 4, 10}, {9,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[4]}, {8, 7, 1}, {5, 4, 10}, {9,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2],
h[1]}, {8, 7, 1}, {5, 4, 10}, {9,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4],
h[1]}, {8, 7, 1}, {5, 4, 10}, {9,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1],
h[2]}, {1, 9, 8}, {10, 6, 5}, {7,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1],
h[4]}, {1, 9, 8}, {10, 6, 5}, {7,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2],
h[1]}, {1, 9, 8}, {10, 6, 5}, {7,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4],
h[1]}, {1, 9, 8}, {10, 6, 5}, {7,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5,
h[2]}, {9, 2, 7}, {6, 11, 4}, {
h[3], 8,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5,
h[4]}, {9, 2, 7}, {6, 11, 4}, {
h[3], 8,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 5,
h[1]}, {9, 2, 7}, {6, 11, 4}, {
h[4], 8,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 5,
h[1]}, {9, 2, 7}, {6, 11, 4}, {
h[2], 8,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[2]}, {8, 7, 2}, {5, 4, 11}, {
h[3], 9,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[4]}, {8, 7, 2}, {5, 4, 11}, {
h[3], 9,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 6,
h[1]}, {8, 7, 2}, {5, 4, 11}, {
h[4], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 6,
h[1]}, {8, 7, 2}, {5, 4, 11}, {
h[2], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[2]}, {2, 9, 8}, {11, 6, 5}, {
h[3], 7,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[4]}, {2, 9, 8}, {11, 6, 5}, {
h[3], 7,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 4,
h[1]}, {2, 9, 8}, {11, 6, 5}, {
h[4], 7,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1],
h[2], 6}, {
h[3],
h[4], 3}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 4,
h[1]}, {2, 9, 8}, {11, 6, 5}, {
h[2], 7,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 8}, {
h[2], 12, 1}, {
h[4], 3, 10}, {9,
h[3], 5}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 8}, {
h[4], 12, 1}, {
h[2], 3, 10}, {9,
h[3], 5}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2], 8}, {
h[1], 12, 1}, {
h[3], 3, 10}, {9,
h[4], 5}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4], 8}, {
h[1], 12, 1}, {
h[3], 3, 10}, {9,
h[2], 5}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 9}, {
h[2], 11, 1}, {12,
h[3], 3}, {
h[4], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 9}, {
h[4], 11, 1}, {12,
h[3], 3}, {
h[2], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2], 9}, {
h[1], 11, 1}, {12,
h[4], 3}, {
h[3], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4], 9}, {
h[1], 11, 1}, {12,
h[2], 3}, {
h[3], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 7}, {12, 1,
h[2]}, {3, 10,
h[4]}, {8,
h[3], 4}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 7}, {12, 1,
h[4]}, {3, 10,
h[2]}, {8,
h[3], 4}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2], 7}, {12, 1,
h[1]}, {3, 10,
h[3]}, {8,
h[4], 4}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4], 7}, {12, 1,
h[1]}, {3, 10,
h[3]}, {8,
h[2], 4}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[1]}, {
h[2], 1, 12}, {11, 2,
h[3]}, {
h[4], 7, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[1]}, {
h[4], 1, 12}, {11, 2,
h[3]}, {
h[2], 7, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[2]}, {
h[1], 1, 12}, {11, 2,
h[4]}, {
h[3], 7, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 8,
h[4]}, {
h[1], 1, 12}, {11, 2,
h[2]}, {
h[3], 7, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[1]}, {
h[2], 1, 11}, {
h[4], 10, 2}, {8, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[1]}, {
h[4], 1, 11}, {
h[2], 10, 2}, {8, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[2]}, {
h[1], 1, 11}, {
h[3], 10, 2}, {8, 6,
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[4]}, {
h[1], 1, 11}, {
h[3], 10, 2}, {8, 6,
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5, 9}, {
h[2], 2, 12}, {
h[3], 11, 3}, {
h[4], 8, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5, 9}, {
h[2], 2, 12}, {
h[4], 11, 3}, {
h[3], 8, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5, 9}, {
h[3], 2, 12}, {
h[2], 11, 3}, {
h[4], 8, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5, 9}, {
h[4], 2, 12}, {
h[2], 11, 3}, {
h[3], 8, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5, 9}, {
h[3], 2, 12}, {
h[4], 11, 3}, {
h[2], 8, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5, 9}, {
h[4], 2, 12}, {
h[3], 11, 3}, {
h[2], 8, 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[2], 11, 1}, {12, 2,
h[3]}, {
h[4], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[4], 11, 1}, {12, 2,
h[3]}, {
h[2], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[2]}, {
h[1], 11, 1}, {12, 2,
h[4]}, {
h[3], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[4]}, {
h[1], 11, 1}, {12, 2,
h[2]}, {
h[3], 5, 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 9}, {
h[2], 11, 2}, {
h[3], 12, 3}, {
h[4], 5, 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 9}, {
h[4], 11, 2}, {
h[3], 12, 3}, {
h[2], 5, 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 6, 9}, {
h[1], 11, 2}, {
h[4], 12, 3}, {
h[3], 5, 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 6, 9}, {
h[1], 11, 2}, {
h[2], 12, 3}, {
h[3], 5, 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4, 9}, {2,
h[2], 12}, {
h[3], 10, 3}, {8,
h[4], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4, 9}, {2,
h[4], 12}, {
h[3], 10, 3}, {8,
h[2], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 4, 9}, {2,
h[1], 12}, {
h[4], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 4, 9}, {2,
h[1], 12}, {
h[2], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 9}, {
h[2], 1, 12}, {
h[4], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 9}, {
h[4], 1, 12}, {
h[2], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2], 9}, {
h[1], 1, 12}, {
h[3], 10, 3}, {8,
h[4], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4], 9}, {
h[1], 1, 12}, {
h[3], 10, 3}, {8,
h[2], 6}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 7}, {12,
h[2], 1}, {3,
h[4], 10}, {9,
h[3], 4}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 7}, {12,
h[4], 1}, {3,
h[2], 10}, {9,
h[3], 4}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 7,
h[1]}, {11, 1,
h[2]}, {2, 10,
h[4]}, {8, 4,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 7,
h[1]}, {11, 1,
h[4]}, {2, 10,
h[2]}, {8, 4,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[2], 11, 1}, {
h[4], 2, 10}, {9, 5,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[1]}, {
h[4], 11, 1}, {
h[2], 2, 10}, {9, 5,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[2]}, {
h[1], 11, 1}, {
h[3], 2, 10}, {9, 5,
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6, 8,
h[4]}, {
h[1], 11, 1}, {
h[3], 2, 10}, {9, 5,
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 8}, {
h[2], 12, 2}, {
h[4], 3, 11}, {
h[3], 9, 5}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 8}, {
h[4], 12, 2}, {
h[2], 3, 11}, {
h[3], 9, 5}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 4}, {3, 8, 9}, {12, 5, 6}, {
h[3],
h[4], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 4}, {3, 8, 9}, {12, 5, 6}, {
h[3],
h[2], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 4}, {3, 8, 9}, {12, 5, 6}, {
h[4],
h[3], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 4}, {3, 8, 9}, {12, 5, 6}, {
h[2],
h[3], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[2]}, {2, 8, 9}, {11, 5, 6}, {
h[3], 7,
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[4]}, {2, 8, 9}, {11, 5, 6}, {
h[3], 7,
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 4,
h[1]}, {2, 8, 9}, {11, 5, 6}, {
h[4], 7,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 4,
h[1]}, {2, 8, 9}, {11, 5, 6}, {
h[2], 7,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 5}, {9, 3, 7}, {6, 12, 4}, {
h[3],
h[4], 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 5}, {9, 3, 7}, {6, 12, 4}, {
h[3],
h[2], 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 5}, {9, 3, 7}, {6, 12, 4}, {
h[4],
h[3], 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 5}, {9, 3, 7}, {6, 12, 4}, {
h[2],
h[3], 8}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 6}, {8, 7, 3}, {5, 4, 12}, {
h[3],
h[4], 9}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 6}, {8, 7, 3}, {5, 4, 12}, {
h[3],
h[2], 9}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 6}, {8, 7, 3}, {5, 4, 12}, {
h[4],
h[3], 9}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 6}, {8, 7, 3}, {5, 4, 12}, {
h[2],
h[3], 9}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 4}, {3, 9, 8}, {12, 6, 5}, {
h[3],
h[4], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 4}, {3, 9, 8}, {12, 6, 5}, {
h[3],
h[2], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 4}, {3, 9, 8}, {12, 6, 5}, {
h[4],
h[3], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 4}, {3, 9, 8}, {12, 6, 5}, {
h[2],
h[3], 7}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[2]}, {9, 1, 7}, {6, 10, 4}, {8,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[4]}, {9, 1, 7}, {6, 10, 4}, {8,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2],
h[1]}, {9, 1, 7}, {6, 10, 4}, {8,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4],
h[1]}, {9, 1, 7}, {6, 10, 4}, {8,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[2]}, {8, 7, 1}, {5, 4, 10}, {9,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[4]}, {8, 7, 1}, {5, 4, 10}, {9,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2],
h[1]}, {8, 7, 1}, {5, 4, 10}, {9,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4],
h[1]}, {8, 7, 1}, {5, 4, 10}, {9,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5,
h[2]}, {9, 2, 7}, {6, 11, 4}, {
h[3], 8,
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 5,
h[4]}, {9, 2, 7}, {6, 11, 4}, {
h[3], 8,
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 5,
h[1]}, {9, 2, 7}, {6, 11, 4}, {
h[4], 8,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 5,
h[1]}, {9, 2, 7}, {6, 11, 4}, {
h[2], 8,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[2]}, {8, 7, 2}, {5, 4, 11}, {
h[3], 9,
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[4]}, {8, 7, 2}, {5, 4, 11}, {
h[3], 9,
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 6,
h[1]}, {8, 7, 2}, {5, 4, 11}, {
h[4], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 6,
h[1]}, {8, 7, 2}, {5, 4, 11}, {
h[2], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[2]}, {2, 9, 8}, {11, 6, 5}, {
h[3], 7,
h[4]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[4]}, {2, 9, 8}, {11, 6, 5}, {
h[3], 7,
h[2]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 4,
h[1]}, {2, 9, 8}, {11, 6, 5}, {
h[4], 7,
h[3]}}}], OrderedNet[{{1, 1}, {{4,
h[1],
h[2]}, {1,
h[3],
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 4,
h[1]}, {2, 9, 8}, {11, 6, 5}, {
h[2], 7,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 8}, {
h[2], 12, 1}, {
h[4], 3, 10}, {9,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 8}, {
h[4], 12, 1}, {
h[2], 3, 10}, {9,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2], 8}, {
h[1], 12, 1}, {
h[3], 3, 10}, {9,
h[4], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4], 8}, {
h[1], 12, 1}, {
h[3], 3, 10}, {9,
h[2], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1,
h[3], 11}, {
h[2], 3, 12}, {
h[4], 6, 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1,
h[3], 11}, {
h[4], 3, 12}, {
h[2], 6, 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2], 8}, {1,
h[4], 11}, {
h[1], 3, 12}, {
h[3], 6, 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4], 8}, {1,
h[2], 11}, {
h[1], 3, 12}, {
h[3], 6, 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 9}, {10, 1,
h[2]}, {11,
h[3], 3}, {4, 7,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 9}, {10, 1,
h[4]}, {11,
h[3], 3}, {4, 7,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2], 9}, {10, 1,
h[1]}, {11,
h[4], 3}, {4, 7,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4], 9}, {10, 1,
h[1]}, {11,
h[2], 3}, {4, 7,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 9}, {1,
h[2], 12}, {10,
h[3], 3}, {7,
h[4], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 9}, {1,
h[2], 12}, {10,
h[4], 3}, {7,
h[3], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 9}, {1,
h[3], 12}, {10,
h[2], 3}, {7,
h[4], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 9}, {1,
h[4], 12}, {10,
h[2], 3}, {7,
h[3], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 9}, {1,
h[3], 12}, {10,
h[4], 3}, {7,
h[2], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 9}, {1,
h[4], 12}, {10,
h[3], 3}, {7,
h[2], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 7}, {12, 1,
h[2]}, {3, 10,
h[4]}, {8,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 7}, {12, 1,
h[4]}, {3, 10,
h[2]}, {8,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2], 7}, {12, 1,
h[1]}, {3, 10,
h[3]}, {8,
h[4], 4}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4], 7}, {12, 1,
h[1]}, {3, 10,
h[3]}, {8,
h[2], 4}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[1]}, {
h[2], 1, 11}, {
h[4], 10, 2}, {8, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[1]}, {
h[4], 1, 11}, {
h[2], 10, 2}, {8, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[2]}, {
h[1], 1, 11}, {
h[3], 10, 2}, {8, 6,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 9,
h[4]}, {
h[1], 1, 11}, {
h[3], 10, 2}, {8, 6,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1,
h[3], 11}, {10, 3,
h[2]}, {7, 6,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1,
h[3], 11}, {10, 3,
h[4]}, {7, 6,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2], 8}, {1,
h[4], 11}, {10, 3,
h[1]}, {7, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4], 8}, {1,
h[2], 11}, {10, 3,
h[1]}, {7, 6,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 7}, {1,
h[3], 10}, {3,
h[2], 12}, {6,
h[4], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 7}, {1,
h[3], 10}, {3,
h[4], 12}, {6,
h[2], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2], 7}, {1,
h[4], 10}, {3,
h[1], 12}, {6,
h[3], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4], 7}, {1,
h[2], 10}, {3,
h[1], 12}, {6,
h[3], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4, 9}, {2,
h[2], 12}, {
h[3], 10, 3}, {8,
h[4], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4, 9}, {2,
h[4], 12}, {
h[3], 10, 3}, {8,
h[2], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 4, 9}, {2,
h[1], 12}, {
h[4], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 4, 9}, {2,
h[1], 12}, {
h[2], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1, 12,
h[2]}, {10, 3,
h[4]}, {7,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1], 8}, {1, 12,
h[4]}, {10, 3,
h[2]}, {7,
h[3], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2], 8}, {1, 12,
h[1]}, {10, 3,
h[3]}, {7,
h[4], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4], 8}, {1, 12,
h[1]}, {10, 3,
h[3]}, {7,
h[2], 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 9}, {
h[2], 1, 12}, {
h[4], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1], 9}, {
h[4], 1, 12}, {
h[2], 10, 3}, {8,
h[3], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2], 9}, {
h[1], 1, 12}, {
h[3], 10, 3}, {8,
h[4], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4], 9}, {
h[1], 1, 12}, {
h[3], 10, 3}, {8,
h[2], 6}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 7}, {12,
h[2], 1}, {3,
h[4], 10}, {9,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1], 7}, {12,
h[4], 1}, {3,
h[2], 10}, {9,
h[3], 4}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 7,
h[1]}, {11, 1,
h[2]}, {2, 10,
h[4]}, {8, 4,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5, 7,
h[1]}, {11, 1,
h[4]}, {2, 10,
h[2]}, {8, 4,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 8}, {
h[2], 12, 2}, {
h[4], 3, 11}, {
h[3], 9, 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6, 8}, {
h[4], 12, 2}, {
h[2], 3, 11}, {
h[3], 9, 5}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 5}, {7, 3, 9}, {4, 12, 6}, {
h[3],
h[4], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 5}, {7, 3, 9}, {4, 12, 6}, {
h[3],
h[2], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 5}, {7, 3, 9}, {4, 12, 6}, {
h[4],
h[3], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 5}, {7, 3, 9}, {4, 12, 6}, {
h[2],
h[3], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[2]}, {7, 1, 9}, {4, 10, 6}, {8,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[4]}, {7, 1, 9}, {4, 10, 6}, {8,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2],
h[1]}, {7, 1, 9}, {4, 10, 6}, {8,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4],
h[1]}, {7, 1, 9}, {4, 10, 6}, {8,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 5}, {9, 3, 7}, {6, 12, 4}, {
h[3],
h[4], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 5}, {9, 3, 7}, {6, 12, 4}, {
h[3],
h[2], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 5}, {9, 3, 7}, {6, 12, 4}, {
h[4],
h[3], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 5}, {9, 3, 7}, {6, 12, 4}, {
h[2],
h[3], 8}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 6}, {8, 7, 3}, {5, 4, 12}, {
h[3],
h[4], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 6}, {8, 7, 3}, {5, 4, 12}, {
h[3],
h[2], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 6}, {8, 7, 3}, {5, 4, 12}, {
h[4],
h[3], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 6}, {8, 7, 3}, {5, 4, 12}, {
h[2],
h[3], 9}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[2], 4}, {3, 9, 8}, {12, 6, 5}, {
h[3],
h[4], 7}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1],
h[4], 4}, {3, 9, 8}, {12, 6, 5}, {
h[3],
h[2], 7}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2],
h[1], 4}, {3, 9, 8}, {12, 6, 5}, {
h[4],
h[3], 7}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4],
h[1], 4}, {3, 9, 8}, {12, 6, 5}, {
h[2],
h[3], 7}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[2]}, {9, 1, 7}, {6, 10, 4}, {8,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[1],
h[4]}, {9, 1, 7}, {6, 10, 4}, {8,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[2],
h[1]}, {9, 1, 7}, {6, 10, 4}, {8,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{5,
h[4],
h[1]}, {9, 1, 7}, {6, 10, 4}, {8,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[2]}, {8, 7, 1}, {5, 4, 10}, {9,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[1],
h[4]}, {8, 7, 1}, {5, 4, 10}, {9,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[2],
h[1]}, {8, 7, 1}, {5, 4, 10}, {9,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{6,
h[4],
h[1]}, {8, 7, 1}, {5, 4, 10}, {9,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1],
h[2]}, {1, 9, 8}, {10, 6, 5}, {7,
h[3],
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[1],
h[4]}, {1, 9, 8}, {10, 6, 5}, {7,
h[3],
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[2],
h[1]}, {1, 9, 8}, {10, 6, 5}, {7,
h[4],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{4,
h[4],
h[1]}, {1, 9, 8}, {10, 6, 5}, {7,
h[2],
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[2]}, {8, 7, 2}, {5, 4, 11}, {
h[3], 9,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 6,
h[4]}, {8, 7, 2}, {5, 4, 11}, {
h[3], 9,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 6,
h[1]}, {8, 7, 2}, {5, 4, 11}, {
h[4], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 6,
h[1]}, {8, 7, 2}, {5, 4, 11}, {
h[2], 9,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[2]}, {2, 9, 8}, {11, 6, 5}, {
h[3], 7,
h[4]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[1], 4,
h[4]}, {2, 9, 8}, {11, 6, 5}, {
h[3], 7,
h[2]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[2], 4,
h[1]}, {2, 9, 8}, {11, 6, 5}, {
h[4], 7,
h[3]}}}], OrderedNet[{{1, 1}, {{
h[1], 5,
h[2]}, {
h[3], 2,
h[4]}}}] -> OrderedNet[{{1, 1, 1, 1}, {{
h[4], 4,
h[1]}, {2, 9, 8}, {11, 6, 5}, {
h[2], 7,
h[3]}}}]};
CloudGet["https://wolfr.am/Llmq1gdc"];
GraphicsGrid[
Partition[
Labeled[Graph[finalStatesPlot[$rewritesOrdered24h4[[#]]]@9,
ImageSize -> 1.2 {200, 150}],
ResourceFunction[
"OrderedGraphModelPlot"][$rewritesOrdered24h4[[#]], Automatic,
Append[#, ImageSize -> 35] & /@ {#2, #3},
"ArrowImageSize" -> 15]] & @@@ {{45, {VertexSize ->
0.35}, {VertexSize -> 0.45}}, {18, {VertexSize ->
0.35}, {VertexSize -> 0.45}},
{11, {VertexSize -> 0.35}, {VertexSize ->
0.45}}, {21, {VertexSize -> 0.35,
VertexCoordinates -> {1 -> {1.2, 1.8}, 2 -> {1.2, 0.6},
3 -> {2.41, 2.40}, 4 -> {0, 0.01}, 5 -> {0.01, 2.41},
6 -> {2.40, 0}}}, {VertexSize -> 0.45}}, {17, {VertexSize ->
0.35}, {VertexSize -> 0.45}}, {31, {VertexSize ->
0.35}, {VertexSize -> 0.45}}}, 3], ImageSize -> Full]
Our models are based on directed (or ordered) hypergraphs. And although the notion is not as natural as for ordinary graphs, one can also consider undirected (or unordered) hypergraphs, in which all elements in a hyperedge are in effect unordered and equivalent. (In general one can also imagine considering any specific set of permutations of elements to be equivalent.)
There are considerably fewer unordered hypergraphs with a given signature than ordered ones:
There is a translation between unordered hypergraphs and ordered ones, or specifically between unordered hypergraphs and directed graphs. Essentially one creates an incidence graph in which each node and each hyperedge in the unordered hypergraph becomes a node in the directed graph—so that the unordered hypergraph above becomes:
But despite this equivalence, just as in the case of ordered graphs, the sequence of rules will be different in an enumeration based on unordered hypergraphs from one based on ordered hypergraphs.
There are many fewer rules with a given signature for unordered hypergraphs than for ordered ones:
In general the behavior seen for unordered rules with a given signature is considerably simpler than for ordered rules with the same signature. For example, here is typical behavior seen with a random set of unordered 23 33 rules:
It is worth noting that the concept of unordered hypergraphs can also be applied for binary hyperedges, in which case it corresponds to undirected ordinary graphs. We discussed above the specific case of trivalent undirected graphs, but one can also consider enumerating rules that allow any valence.
This rule is similar, but not identical, to a rule we have often used as an example:
Interpreting this rule as referring to undirected graphs, it evolves according to:
In general, rules for undirected graphs of a given signature yield significantly simpler behavior than rules of the same signature for directed graphs. And, for example, even among all the 7992 distinct 22 52 rules for undirected graphs, no globular structures are seen.
Hypergraphs provide a convenient approach to representing our models. But there are other approaches that focus more on the symbolic structure of the models. For example, we can think of a rule such as
And much as in the previous subsection, it is always possible to represent such transformations in our models, for example by having fixed subhypergraphs that act as “markers” to distinguish different functional heads or different “types”. (Similar methods can be used to have literals in addition to pattern variables in the transformations, as well as “named slots” [100].)
Our models can be thought of as abstract rewriting (or reduction) systems that operate on hypergraphs, or general collections of relations. Frameworks such as lambda calculus [101][102] and combinatory logic [103][104] have some similarities, but focus on defining reductions for tree structures, rather than general graphs or hypergraphs.
One can ask how our models relate to traditional mathematical systems, for example from universal algebra [105][106]. One major difference is that our models focus on transformations, whereas traditional axiomatic systems tend to focus on equalities. However, it is always possible to define two-way rules or pairs of rules XY, YX which in effect represent equalities, and on which a variety of methods from logic and mathematics can be used.
The general case of our models seems to be somewhat out of the scope of traditional mathematical systems. However, particularly if one considers the simpler case of string substitution systems, it is possible to see a variety of connections [1:p938]. For example, two-way string rewrites can be thought of as defining the relations for a semigroup (or, more specifically, a monoid). If one adds inverse elements, then one has a group.
Ignoring inverse elements (which in this case just make double edges) the first part of the infinite Cayley graph for the group with relations ABBA has the form:
One can think of the Cayley graph as being created by starting with a tree, corresponding to the Cayley graph for a free group, then identifying nodes that are related by relations. The edges in the multiway graph (which correspond to updating events) thus have a correspondence to cycles in the Cayley graph.
There does not appear to be any direct correspondence to quantities such as growth rates of Cayley graphs (cf. [22]).