[1] S. Wolfram (2002), A New Kind of Science, Wolfram Media, wolframscience.com/nks/.
[2] S. Wolfram (2020), “Finally We May Have a Path to the Fundamental Theory of Physics... and It’s Beautiful”, Stephen Wolfram Writings, writings.stephenwolfram.com/2020/04/finally-we-may-have-a-path-to-the-fundamental-theory-of-physics-and-its-beautiful.
[3] M. P. Szudzik (2017), “The Rosenberg–Strong Pairing Function”. arXiv:1706.04129.
[4] E. Pegg, Jr. (2019), TupleIndex, Wolfram Function Repository. resources.wolframcloud.com/FunctionRepository/resources/TupleIndex.
[5] S. Wolfram (1983), “Statistical Mechanics of Cellular Automata”, Rev Mod Phys 55, 601–44. doi:10.1103/RevModPhys.55.601.
[6] Wolfram Research (2002), CellularAutomaton, Wolfram Language function, reference.wolfram.com/language/ref/CellularAutomaton (updated 2017).
[7] Wolfram Research (2007), TuringMachine, Wolfram Language function, reference.wolfram.com/language/ref/TuringMachine.html.
[8] Wolfram Physics Project (2020), “Registry of Notable Universes”, wolframphysics.org/universes/.
[9] M. Piskunov (2020), ConnectedWolframModelQ, Wolfram Function Repository, resources.wolframcloud.com/FunctionRepository/resources/ConnectedWolframModelQ.
[10] Wolfram Research (2007), BellB, Wolfram Language function, reference.wolfram.com/language/ref/BellB.html.
[11] OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, oeis.org.
[12] E. Pegg, Jr. (2020), “Ordered Hypergraph Canonicalization”, Technical Document, wolframcloud.com/obj/wolframphysics/Documents/OrderedHypergraphCanonicalization.nb.
[13] Wolfram Research (2017), FeatureSpacePlot, Wolfram Language function, reference.wolfram.com/language/ref/FeatureSpacePlot.html (updated 2018).
[14] Wolfram Research (2015), ImageIdentify, Wolfram Language function, reference.wolfram.com/language/ref/ImageIdentify.html.
[15] J. McLoone (2019), NonConvexHullMesh, Wolfram Function Repository, resources.wolframcloud.com/FunctionRepository/resources/NonConvexHullMesh.
[16] O. Zariski (1995), Algebraic Surfaces, Springer.
[17] W. P. Thurston (1997), “Orbifolds”, in The Geometry and Topology of Three–Manifolds, Princeton U Press, 297–355.
[18] E. Kasner and F. Supnick (1943), “The Apollonian Packing of Circles”, Proc Natl Acad Sci USA 29, 378–84. doi:10.1073/pnas.29.11.378.
[19] J. Stillwell (1996), Sources of Hyperbolic Geometry, American Mathematical Society.
[20] H. S. M. Coxeter (1942), Non-Euclidean Geometry, U of Toronto Press.
[21] G. H. Hardy and E. M. Wright (1938), An Introduction to the Theory of Numbers, Clarendon Press.
[22] C. Druţu and M. Kapovich (2018), Geometric Group Theory, Colloquium.
[23] B. Mandelbrot (1977), Fractals: Form, Chance, and Dimension, W. H. Freeman.
[24] A. Gray (1974), “The Volume of a Small Geodesic Ball of a Riemannian Manifold”, Michigan Math J 20, 329–44. doi:10.1307/mmj/1029001150.
[25] G. Ricci-Curbastro (1904), “Direzioni e invarianti principali in una varietà qualunque” [“Principal Directions and Invariants in Any Manifold”], Atti Ist Ven 63, 1233–39. JFM 35.0145.01.
[26] A. Gray, E. Abbena and S. Salamon (2006), Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed., Chapman and Hall.
[27] Y. Olliver (2013), “A Visual Introduction to Riemann Curvatures and Some Discrete Generalizations”, CRM Proc & Lect Note 56, 197–220. doi:10.1090/crmp/056/08.
[28] Wolfram Research (2020), MeshConnectivityGraph, Wolfram Language function, reference.wolfram.com/language/ref/MeshConnectivityGraph.html.
[29] G. H. Hardy (1912), “Properties of Logarithmico‐Exponential Functions”, P Lond Math Soc s2–10, 54–90. doi:10.1112/plms/s2-10.1.54.
[30] Wolfram Research (2020), Asymptotic, Wolfram Language function, reference.wolfram.com/language/ref/Asymptotic.html.
[31] S. Wolfram (1984), “Universality and Complexity in Cellular Automata”, Physica D 10, 1–35. doi:10.1016/0167-2789(84)90245-8.
[32] Wolfram Research, Graph Measures & Metrics, Wolfram Language guide, reference.wolfram.com/language/guide/GraphMeasures.html.
[33] M. Newman (2010), Networks, Oxford U Press.
[34] Wolfram Research (2010), KirchoffMatrix, Wolfram Language function, reference.wolfram.com/language/ref/KirchhoffMatrix.html (updated 2015).
[35] M. Reuter, F. E. Wolter and N. Peinecke (2006), “Laplace–Beltrami Spectra as ‘Shape-DNA’ of Surfaces and Solids”, Comput Aided Design 38, 342–66. doi:10.1016/j.cad.2005.10.011.
[36] Wolfram Research (2016), PlanarGraph, Wolfram Language function, reference.wolfram.com/language/ref/PlanarGraph.html.
[37] C. Kuratowski (1930), “Sur le problème des courbes gauches en topologie”, Fund Math 15, 271–83. doi:10.4064/fm-15-1-271-283. Translated as “On the Problem of Skew Curves in Topology” (1983), J. Jaworowski (trans.), Graph Theory, Lect Notes Math 1018, 1–13. doi:10.1007/BFb0071605.
[38] N. Robertson and P. D. Seymour (1983), “Graph Minors. I. Excluding a Forest”, J Comb Theory B 35, 39–61. doi:10.1016/0095-8956(83)90079-5.
[39] S. Wolfram (1985), “Origins of Randomness in Physical Systems”, Phys Rev Lett 55, 449–52. doi:10.1103/PhysRevLett.55.449.
[40] L. Lovász (2012), Large Networks and Graph Limits, American Mathematical Society.
[41] Wolfram Research (2010), GraphDifference, Wolfram Language function, reference.wolfram.com/language/ref/GraphDifference.html (updated 2015).
[42] R. Forman (2003), “Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature”, Discrete Comput Geom 29, 323–74. doi:10.1007/s00454-002-0743-x.
[43] J. Jost (2011), Riemannian Geometry and Geometric Analysis, Springer.
[44] A. Gray (2004), Tubes, 2nd ed., Springer.
[45] H. Poincaré (1895), “Analysis situs”, J Éc Polytech 2, 1–121.
[46] J. Lauri and R. Scapellato (2003), Topics in Graph Automorphisms and Reconstruction, Cambridge U Press.
[47] B. D. McKay and C. E. Praeger (1994), “Vertex-Transitive Graphs Which Are Not Cayley Graphs, I”, J Austral Math Soc Ser A 56, 53–63. doi:10.1017/S144678870003473X.
[48] A. Eskin, D. Fisher and K. Whyte (2007), “Quasi-Isometries and Rigidity of Solvable Groups”, Pure Appl Math Q 3, 927–47. arXiv:math/0511647.
[49] B. C. Hall (2013), Quantum Theory for Mathematicians, Springer.
[50] R. I. Grigorchuk (1985), “Degrees of Growth of Finitely Generated Groups, and the Theory of Invariant Means”, Math USSR Izv 25, 259–300. doi:10.1070/IM1985v025n02ABEH001281.
[51] S. Wolfram (2004), “String Substitution Systems”, draft document, wolframcloud.com/obj/wolframphysics/WorkingMaterial/2004/FeaturedItems/StringSubstitutionSystems.nb.
[52] E. L. Post (1947), “Recursive Unsolvability of a Problem of Thue”, J Symbolic Logic 12, 1–11. doi:10.2307/2267170.
[53] A. A. Markov (1947), “Невозможность некоторых алгоритмов в теории ассоциативных систем” [“Impossibility of Certain Algorithms in the Theory of Associative Systems”], Dokl Akad Nauk SSSR 55, 587–90.
[54] H. Grassmann (1861), Lehrbuch der Arithmetik für höhere Lehranstalten [“Textbook of Arithmetic for Institutions of Higher Learning”], Verlag von T. C. F. Enslin.
[55] A. Church and J. B. Rosser (1936), “Some Properties of Conversion”, T Am Math Soc 39, 472–82. doi:10.1090/S0002-9947-1936-1501858-0.
[56] M. H. A. Newman (1942), “On Theories with a Combinatorial Definition of ‘Equivalence’”, Ann Math 43, 223–43. doi:10.2307/1968867.
[57] J. Milnor (1968), “A Note on Curvature and Fundamental Group”, J Differential Geom 2, 1–7. doi:10.4310/jdg/1214501132.
[58] M. Gromov (1981), “Groups of Polynomial Growth and Expanding Maps”, Publ Math-Paris 53, 53–78. doi:10.1007/BF02698687.
[59] S. Wolfram, (2019), StringOverlaps, Wolfram Function Repository, resources.wolframcloud.com/FunctionRepository/resources/StringOverlaps.
[60] B. Buchberger (1987), “History and Basic Features of the Critical-Pair/Completion Procedure”, J Symb Comput 3, 3–38. doi:10.1016/S0747-7171(87)80020-2.
[61] D. E. Knuth and P. Bendix (1983), “Simple Word Problems in Universal Algebras”, in Automation of Reasoning, J. H. Siekmann and G. Wrightson (eds.), Springer, 342–76.
[62] B. Buchberger (1976), “A Theoretical Basis for the Reduction of Polynomials to Canonical Forms”, ACM SIGSAM Bulletin 10, 19–29. doi:10.1145/1088216.1088219.
[63] Terese (2003), Term Rewriting Systems, M. Bezem, et al. (eds.), Cambridge U Press.
[64] F. Baader and T. Nipkow (1998), Term Rewriting and All That, Cambridge U Press.
[65] N. Dershowitz and J. P. Jouannaud (1990), “Rewrite Systems”, in Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics, J. v. Leeuwen (ed.), Elsevier, 243–320.
[66] J. Gorard (2020), CausalInvariantQ, Wolfram Function Repository, resources.wolframcloud.com/FunctionRepository/resources/CausalInvariantQ.
[67] S. Wolfram (2019), StringOverlapsQ, Wolfram Function Repository, resources.wolframcloud.com/FunctionRepository/resources/StringOverlapsQ.
[68] Wolfram Research (2006), UnforgeableWordConstant, MathematicalConstant entity, Wolfram Language Knowledgebase, Entity["MathematicalConstant","UnforgeableWordConstant"].
[69] G. Birkhoff (1940), Lattice Theory, American Mathematical Society.
[70] Wolfram Research (2010), BreadthFirstScan, Wolfram Language function, reference.wolfram.com/language/ref/BreadthFirstScan.html (updated 2015).
[71] Wolfram Research (2010), DepthFirstScan, Wolfram Language function, reference.wolfram.com/language/ref/DepthFirstScan.html (updated 2015).
[72] H. Minkowski (1908), “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern” [“The Fundamental Equations for Electromagnetic Processes in Moving Bodies”], Nachr Ges Wiss Göttingen, Math-Phys Kl, 53–111.
[73] H. Minkowski (1909), “Raum und Zeit”, Phys Z 10, 104–11. Translated as “Time and Space” (1918), in The Monist, Vol. 28, E. H. Carus (trans.), Open Court Publishing, 288–302.
[74] R. Arnowitt, S. Deser and C. W. Misner (1959), “Dynamical Structure and Definition of Energy in General Relativity”, Phys Rev 116, 1322–30. doi:10.1103/PhysRev.116.1322.
[75] C. W. Misner, K. S. Thorne and J. A. Wheeler (1973), Gravitation, W. H. Freeman.
[76] Wolfram Research (2012), GlobalClusteringCoefficient, Wolfram Language function, reference.wolfram.com/language/ref/GlobalClusteringCoefficient.html (updated 2015).
[77] Wolfram Research (2012), LocalClusteringCoefficient, Wolfram Language function, reference.wolfram.com/language/ref/LocalClusteringCoefficient.html (updated 2015).
[78] H. S. M. Coxeter (1964), Projective Geometry, Blaisdell Publishing.
[79] G. E. Moorhouse (2007), “Incidence Geometry”, course notes for a graduate course, Fall 2007. ericmoorhouse.org/handouts/Incidence_Geometry.pdf.
[80] U. Brehm, M. Greferath and S. E. Schmidt (1995), “Projective Geometry on Modular Lattices”, in Handbook of Incidence Geometry, F. Buekenhout (ed.), Elsevier, 1115–42.
[81] J. v. Neumann (1936), “Continuous Geometry”, P Natl Acad Sci 22, 92–100. doi:10.1073/pnas.22.2.92.
[82] Wolfram Research (2018), FindEquationalProof, Wolfram Language function, reference.wolfram.com/language/ref/FindEquationalProof.html (updated 2020).
[83] Y. Matiyasevič (1967), “Простые примеры неразрешимых канонических исчислений” [“Simple Examples of Undecidable Associative Calculi”], Dokl Akad Nauk SSSR 173, 1264–66.
[84] S. Nakamoto (2008), Bitcoin: A Peer-to-Peer Electronic Cash System, bitcoin.org/bitcoin.pdf.
[85] J. Gorard (2019), IsomorphicHypergraphQ, Wolfram Function Repository, resources.wolframcloud.com/FunctionRepository/resources/IsomorphicHypergraphQ.
[86] J. Frauendiener and H. Friedrich (eds.) (2002), The Conformal Structure of Space-Times, Springer.
[87] S. Wolfram (2004), “Network Substitution Systems”, draft document, wolframcloud.com/obj/wolframphysics/WorkingMaterial/2004/FeaturedItems/NetworkSubstitutionSystems.nb.
[88] D. J. Binder and S. Rychkov (2019), “Deligne Categories in Lattice Models and Quantum Field Theory, or Making Sense of O(N) Symmetry with Non-integer N”. arXiv:1911.07895.
[89] A. M. Turing (1938), “Finite Approximations to Lie Groups”, Ann Math 39, 105–11. doi:10.2307/1968716.
[90] A. Thom (2018), “Finitary Approximations of Groups and Their Applications”, in Proceedings of the International Congress of Mathematicians, Vol. III, B. Sirakov, P. N. d. Souza and M. Viana (eds.), World Scientific, 1779–1800.
[91] J. G. Sinaĭ (1968), “Построение марковских разбиений” [“Construction of Markov Partitionings”], Funkcional Anal i Priložen 2, 70–80. MR 0250352.
[92] D. Lind and B. Marcus (1995), An Introduction to Symbolic Dynamics and Coding, Cambridge U Press.
[93] M. Piskunov (2019), “Confluent Set Substitution Systems”, Wolfram Summer School, community.wolfram.com/groups/-/m/t/1729148.
[94] S. Wolfram (2007), “The Prize Is Won; The Simplest Universal Turing Machine Is Proved”, Stephen Wolfram Writings, writings.stephenwolfram.com/2007/10/the-prize-is-won-the-simplest-universal-turing-machine-is-proved/.
[95] Wolfram Research (2007), “The Wolfram 2,3 Turing Machine Research Prize”, turingprize.org.
[96] A. Smith (2020), “Universality of Wolfram's 2,3 Turing Machine”, Complex Systems 29, 1–44. doi:10.25088/ComplexSystems.29.1.1.
[97] S. A. Cook (1971), “The Complexity of Theorem-Proving Procedures”, ACM S Theory Comput STOC71, 151–58. doi:10.1145/800157.805047.
[98] Wolfram Research, the Wolfram Language, wolfram.com/language/.
[99] Wolfram Research (2003), ForAll, Wolfram Language function, reference.wolfram.com/language/ref/ForAll.html.
[100] Wolfram Research (2014), Association, Wolfram Language function, reference.wolfram.com/language/ref/Association.html, (updated 2016).
[101] A. Church (1936), “An Unsolvable Problem of Elementary Number Theory”, Am J Math 58, 345–63. doi:10.2307/2371045.
[102] H. P. Barendregt (1981), The Lambda Calculus. Its Syntax and Semantics, North-Holland.
[103] M. Schönfinkel (1924), “Über die Bausteine der mathematischen Logik” [“On the Building Blocks of Mathematical Logic”], Math Ann 92, 305–16. doi:10.1007/BF01448013.
[104] H. B. Curry (1930), “Grundlagen der kombinatorischen Logik” [“Foundations of Combinatory Logic”], Am J Math 52, 509–36. doi:10.2307/2370619.
[105] A. N. Whitehead (1898), A Treatise on Universal Algebra, Cambridge U Press.
[106] S. N. Burris and H. P Sankappanavar (1981), A Course in Universal Algebra, Springer. Revised online edition (2012), math.uwaterloo.ca/~snburris/htdocs/ualg.html.
[107] K. Gödel (1931), “Über formal unentscheidbare Sätze der ‘Principia Mathematica’ und verwandter Systeme I”, Monatsh Math 38, 173–98. Translated as On Formally Undecidable Propositions of Principia Mathematica and Related Systems (1992), B. Meltzer (trans.), Dover.
[108] M. Davis (ed.) (1965), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press.
[109] M. Rabin and D. S. Scott (1959), “Finite Automata and Their Decision Problems”, IBM J Res Dev 3, 114–25. doi:10.1147/rd.32.0114.
[110] S. Wolfram (1986), “Cellular Automaton Fluids 1: Basic Theory”, J Stat Phys 45, 471–526. doi:10.1007/BF01021083.
[111] A. Einstein (1916), “Die Grundlage der allgemeinen Relativitätstheorie”, Ann Phys–Leipzig 354, 769–822. doi:10.1002/andp.19163540702. Translated as Relativity: The Special and the General Theory (2010), Martino Fine Books.
[112] W. Rindler (1991), Introduction to Special Relativity, 2nd ed., Oxford U Press.
[113] J. Gorard (2020), “Some Relativistic and Gravitational Properties of the Wolfram Model”, wolframcloud.com/obj/wolframphysics/Documents/some-relativistic-and-gravitational-properties-of-the-wolfram-model.pdf.
[114] A. Einstein (1915), “Die Feldgleichungen der Gravitation”, Sitzber K Preuss Aka 48, 844–47. Translated as “The Field Equations of Gravitation”, in The Collected Papers of Albert Einstein, Vol. 6: The Berlin Years: Writings, 1914–1917 (1997), A. Engel (trans.), Princeton U Press, 117–20.
[115] D. Hilbert (1915), “Die Grundlagen der Physik. (Erste Mitteilung)”, Nachr Ges Wiss Göttingen, Math-Phys Kl, 395–407. Translated as “The Foundations of Physics (First Communication)”, in The Genesis of General Relativity (2007), M. Janssen, et al. (eds.), Springer, 1925–38.
[116] Y. Choquet-Bruhat (2009), General Relativity and the Einstein Equations, Oxford U Press.
[117] G. Lemaître (1927), “Un Univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques”, Ann Soc Sci Brux A47, 49–59. Translated as “A Homogenous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-Galactic Nebulae” (1931), Mon Not R Astron Soc 91, 483–90. doi:10.1093/mnras/91.5.483.
[118] B. Bollobás (1979), Graph Theory, Springer.
[119] S. Wolfram (2017), “Persistent Structures in Rule 110”, Wolfram Data Repository, datarepository.wolframcloud.com/resources/Persistent-Structures-in-Rule110.
[120] Y. Gershtein and A. Pomarol (2018–2019), “Extra Dimensions”, in 2019 Review of Particle Physics, M. Tanabashi, et al. (Particle Data Group), Phys Rev D 98, 030001.
[121] J. Gorard (2020), “Some Quantum Mechanical Properties of the Wolfram Model”, wolframcloud.com/obj/wolframphysics/Documents/some-quantum-mechanical-properties-of-the-wolfram-model.pdf.
[122] J. v. Neumann (1927), “Mathematische Begründung der Quantenmechanik” [“Mathematical Foundations of Quantum Mechanics”], Nachr Ges Wiss Göttingen, Math-Phys Kl, 1–57. JFM 53.0848.03.
[123] D. Hilbert, J. v. Neumann and L. Nordheim (1928), “Über die Grundlagen der Quantenmechanik” [“About the Foundations of Quantum Mechanics”], Math Ann 98, 1–30. doi:10.1007/BF01451579.
[124] R. Feynman and A. R. Hibbs (1965), Quantum Mechanics and Path Integrals, McGraw-Hill.
[125] P. A. M. Dirac (1930), The Principles of Quantum Mechanics, Oxford U Press.
[126] A. Degasperis, L. Fonda and G. C. Ghirardi (1974), “Does the Lifetime of an Unstable System Depend on the Measuring Apparatus?”, Nuovo Ciment A 21, 471–84. doi:10.1007/BF02731351.
[127] E. C. G. Sudarshan and B. Misra (1977), “The Zeno's Paradox in Quantum Theory”, J Math Phys 18, 756–63. doi:10.1063/1.523304.
[128] M. Atiyah, M. Dunajski and L. J. Mason (2017), “Twistor Theory at Fifty: From Contour Integrals to Twistor Strings”, P R Soc A 473, 20170530. doi:10.1098/rspa.2017.0530.
[129] S. W. Hawking (1974), “Black Hole Explosions?”, Nature 248, 30–31. doi:10.1038/248030a0.
[130] K. Schwarzschild (1916), “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie” [“About the Gravitational Field of a Sphere of Incompressible Liquid According to Einstein’s Theory”], Sitzber K Preuss Akad Wiss, Phys-Math Kl, 424–34.
[131] J. M. Maldacena (2003), “Eternal Black Holes in AdS”, J High Energy Phys 0304, 21. arXiv:hep-th/0106112.
[132] L. Susskind, L. Thorlacius and J. Uglum (1993), “The Stretched Horizon and Black Hole Complementarity”, Phys Rev D 48, 3743–61. arXiv:hep-th/9306069.
[133] A. Almheiri, et al. (2019), “The Page Curve of Hawking Radiation from Semiclassical Geometry”, J High Energy Phys 149, 1–23. arXiv:1908.10996.
[134] J. C. Taylor (ed.) (2001), Gauge Theories in the Twentieth Century, Imperial College Press.
[135] N. Steenrod (1951), The Topology of Fibre Bundles, Princeton U Press.
[136] A. Marsh (2016), “Gauge Theories and Fiber Bundles: Definitions, Pictures, and Results”. arXiv:1607.03089v2.
[137] M. Planck (1900), “Über irreversible Strahlungsvorgänge” [“On Irreversible Radiation Processes”], Annalen der Physik 306, 69–122. doi:10.1002/andp.19003060105.
[138] Wolfram Research (1996), ProductLog, Wolfram Language function, reference.wolfram.com/language/ref/ProductLog.html.
[139] H. Dehmelt (1988), “A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius”, Phys Scripta T22, 102–10. doi:10.1088/0031-8949/1988/T22/016.
[140] D. Bourilkov (2000), “Search for TeV Strings and New Phenomena in Bhabha Scattering at CERN LEP2”, Phys Rev D 62, 076005. arXiv:hep-ph/0002172.
[141] S. Wolfram (1979), “Abundances of New Stable Particles Produced in the Early Universe”, Phys Lett B 82, 65–68. doi:10.1016/0370-2693(79)90426-X.
[142] E. W. Kolb and M. S. Turner (1990), The Early Universe, in Frontiers in Physics, Vol. 69, Addison-Wesley.
[143] L. Baudis and S. Profumo (2018–2019), “Dark Matter”, in 2019 Review of Particle Physics, M. Tanabashi, et al. (Particle Data Group), Phys Rev D 98, 030001.
[144] G. Chaitin (1966), “On the Length of Programs for Computing Finite Binary Sequences”, J ACM 13, 547–69. doi:10.1145/321356.321363.
[145] A. N. Kolmogorov (1968), “Three Approaches to the Quantitative Definition of Information”, Int J Comput Math 2, 157–68. doi:10.1080/00207166808803030.
[146] R. J. Solomonoff (1960), A Preliminary Report on a General Theory of Inductive Inference, revision of Report V-131, Zator and Air Force Office of Scientific Research.
[147] S. Wolfram (2018), “Logic, Explainability and the Future of Understanding”, Stephen Wolfram Writings, writings.stephenwolfram.com/2018/11/logic-explainability-and-the-future-of-understanding/.
[148] S. Wolfram, et al. (1994–2020), “Archives of the Wolfram Physics Project: Working Materials”, wolframphysics.org/archives/index.
[149] S. Wolfram (2011), “The Role of Live Experiments at the Wolfram Science Summer School”, Wolfram Summer School, wolfram.com/broadcast/video.php?v=929.
[150] G. Rozenberg (ed.) (1997–1999), Handbook of Graph Grammars and Computing by Graph Transformation, Vols. 1–3, World Scientific.
[151] A. Thue (1914), “Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln” [“Problems about the Changes of Symbol Series According to Fixed Rules”], Christiana Vid Selsk Skr I, Mat Nat Kl 10, reprinted in Selected Papers of Axel Thue (1977), Universitetsforlaget, 493–524.
[152] R. V. Book and F. Otto (1993), String-Rewriting Systems, Springer.
[153] E. L. Post (1943), “Formal Reductions of the General Combinatorial Decision Problem”, Am J Math 65, 197–215. doi:10.2307/2371809.
[154] A. A. Markov (1951), “теория алгоритмов”, Trudy Mat Inst. Steklov 38, 176–89. Translated as “Theory of Algorithms” (1960), E. Hewitt (trans.), Amer Math Soc Transl 15, 1–14.
[155] J. R. Büchi (1964), “Regular Canonical Systems”, Arch math Logik 6, 91–111. doi:10.1007/BF01969548.
[156] O. Tafjord (2004), “NKS and the Nature of Space and Time”, presented at NKS 2004, Boston, MA. wolframscience.com/conference/2004/presentations/material/oyvindtafjord.nb.
[157] I. Retter [Thiesen] (2011), “Networks as Manifolds”, Wolfram Summer School, education.wolfram.com/summer/assets/alumni/2011/IsabellaThiesen.pdf.
[158] S. Wolfram (2015), “What Is Spacetime, Really?”, Stephen Wolfram Writings, writings.stephenwolfram.com/2015/12/what-is-spacetime-really/.
[159] S. Wolfram, J. Gorard, M. Piskunov, et al. (2019–2020), “Archives of the Wolfram Physics Project: Working Materials”, wolframphysics.org/archives/index?i=2019.
[160] S. Berryman (2016), “Ancient Atomism”, in The Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.), Metaphysics Research Lab, Stanford University, plato.stanford.edu/entries/atomism-ancient/.
[161] R. Descartes (1644), Principia Philosophiae. Reprinted in René Descartes: Principles of Philosophy (1982), R. P. Miller (trans.), Springer.
[162] W. Thomson [Kelvin] (1887), “On the Division of Space with Minimum Partitional Area”, Philos Mag 24, 503–14. doi:10.1080/14786448708628135.
[163] A. Einstein (1917), Albert Einstein to Walter Dällenbach, after February 15, 1917, reprinted in The Collected Papers of Albert Einstein, Vol. 8: The Berlin Years: Correspondence, 1914–1918 (1998), A. M. Hentschel (trans.), Princeton U Press, 285–87.
[164] R. Loll (2001), “Discrete Lorentzian Quantum Gravity”, Nucl Phys B 94, 96–107. arXiv:hep-th/0011194.
[165] J. Ambjørn, M. Carfora and A. Marzuoli (1997), The Geometry of Dynamical Triangulations, Springer.
[166] J. Ambjørn, J. Jurkiewicz and R. Loll (2009), “Quantum Gravity, or the Art of Building Spacetime”, in Approaches to Quantum Gravity, D. Oriti (ed.), Cambridge U Press, 341–59. arXiv:hep-th/0604212.
[167] L. Bombelli, J. Lee, D. Meyer and R. D. Sorkin (1987), “Space-time as a Causal Set”, Phys Rev Lett 59, 521–24. doi:10.1103/PhysRevLett.59.521.
[168] F. Dowker (2006), “Causal Sets as Discrete Spacetime”, Contemp Phys 47, 1–9. doi:10.1080/17445760500356833.
[169] F. Markopoulou (2000), “The Internal Description of a Causal Set: What the Universe Looks Like from the Inside”, Commun Math Phys 211, 559–83. doi:10.1007/s002200050826.
[170] A. Ashtekar (1986), “New Variables for Classical and Quantum Gravity”, Phys Rev Lett 57, 2244–47. doi:10.1103/PhysRevLett.57.2244.
[171] C. Rovelli (1998), “Loop Quantum Gravity”, Living Rev Relativ 1, revised 2008. doi:10.12942/lrr-1998-1.
[172] J. A. Wheeler (1964), “Geometrodynamics and the Issue of Final State”, in Relativity, Groups and Topology, C. DeWitt and B. DeWitt (eds.), Gordon & Breach, 317–520.
[173] J. A. Wheeler (1980), “Pregeometry: Motivations and Prospects”, in Quantum Theory and Gravitation, A. R. Marlow (ed.), Academic Press, 1–11.
[174] D. Meschini, M. Lehto and J. Piilonen (2005), “Geometry, Pregeometry and Beyond”, Stud Hist Philos Mod Phys 36, 435–64. doi:10.1016/j.shpsb.2005.01.002.
[175] J. D. Bekenstein (1981), “Universal Upper Bound on the Entropy-to-Energy Ratio for Bounded Systems”, Phys Rev D 23, 287–98. doi:10.1103/PhysRevD.23.287.
[176] G. ’t Hooft (1993), “Dimensional Reduction in Quantum Gravity”, Conf Proc C930308, 284–96. arXiv:gr-qc/9310026.
[176] G. ’t Hooft (1993), “Dimensional Reduction in Quantum Gravity”, Conf Proc C930308, 284–96. In Salamfestschrift: A Collection of Talks from the Conference on Highlights of Particle and Condensed Matter Physics (1994), A. Ali, J. Ellis and S. Randjbar-Daemi (eds.), World Scientific.
[177] R. Bousso (2002), “The Holographic Principle”, Rev Mod Phys 74, 825–74. arXiv:hep-th/0203101.
[178] D. R. Finkelstein (1996), Quantum Relativity, Springer.
[179] T. Regge (1961), “General Relativity without Coordinates”, Nuovo Cimento 19, 558–71. doi:10.1007/BF02733251.
[180] R. Penrose (1971), “Angular Momentum: An Approach to Combinatorial Spacetime”, in Quantum Theory and Beyond, T. Bastin (ed.), Cambridge U Press, 151–80.
[181] C. Rovelli and L. Smolin (1995), “Spin Networks and Quantum Gravity”, Phys Rev D 52, 5743–59. doi:10.1103/PhysRevD.52.5743.
[182] J. C. Baez (2000), “An Introduction to Spin Foam Models of BF Theory and Quantum Gravity”, in Geometry and Quantum Physics, Lecture Notes in Physics, Vol. 543, H. Gausterer, L. Pittner and H. Grosse (eds.), Springer, 25–93.
[183] J. C. Baez (1996), “Spin Networks in Gauge Theory”, Adv Math 117, 253–72. doi:10.1006/aima.1996.0012.
[184] J. P. Moussouris (1983), “Quantum Models of Space-Time Based on Recoupling Theory”, PhD diss., Oxford University.
[185] B. Swingle (2012), “Constructing Holographic Spacetimes Using Entanglement Renormalization”. arXiv:1209.3304.
[186] P. Leifer (1997), “Superrelativity as an Element of a Final Theory”, Found Phys 27, 261–85. doi:10.1007/BF02550454.
[187] D. Bohm (1962), “A Proposed Topological Formulation of Quantum Theory”, in The Scientist Speculates, I. J. Good (ed.), Basic Books, 302–14.
[188] A. Döring and C. J. Isham (2008), “A Topos Foundation for Theories of Physics: I. Formal Languages for Physics”, J Math Phys 49, 053515. doi:10.1063/1.2883740.
[189] G. ’t Hooft (2016), The Cellular Automaton Interpretation of Quantum Mechanics, Springer.
[190] K. Svozil (1986), “Are Quantum Fields Cellular Automata?”, Phys Lett A 119, 153–56. doi:10.1016/0375-9601(86)90436-6.
[191] E. Fredkin (2003), “An Introduction to Digital Philosophy”, Int J Theor Phys 42, 189–247. doi:10.1023/A:1024443232206.
[192] K. Zuse (1967), “Rechnender Raum”, Elektron Datenverarb 8, 336–44. Translated as “Calculating Space”, MIT Project MAC (1970), AZT-70-164-GEMIT.
[193] J. G. Russo (1993), “Discrete Strings and Deterministic Cellular Strings”, Nucl Phys B 406, 107–44. doi:10.1016/0550-3213(93)90163-J.
[194] L. H. Kauffman and H. P. Noyes (1996), “Discrete Physics and the Dirac Equation”, Phys Lett A 218, 139–46. arXiv:hep-th/9603202.
[195] T. Bastin and C. W. Kilmister (1995), Combinatorial Physics, World Scientific.
[196] J. C. Amson and L. H. Kauffman (eds.) (2014), Scientific Essays in Honor of H. Pierre Noyes on the Occasion of His 90th Birthday, World Scientific.
[197] P. Ginsparg (1988), “Applied Conformal Field Theory”, in Fields, Strings and Critical Phenomena (Les Houches, Session XLIX, 1988), E. Brézin and J. Zinn-Justin (eds.), North-Holland, 1–168.
[198] J. Baez and J. Dolan (1998), “Categorification”, in Higher Category Theory, E. Getzler and M. Kapranov (eds.), Contemp Math 230, 1–36. arXiv:math/9802029.
[199] A. Connes (1994), Noncommutative Geometry, Academic Press.
[200] M. B. Green, J. H. Schwarz and E. Witten (1987), Superstring Theory, Vol. 1, Cambridge U Press.
[201] Wolfram Physics Project (2020), “Software Tools”, wolframphysics.org/tools/.
[202] Wolfram Physics Project (2020), “Visual Summary”, wolframphysics.org/visual-summary/.
[203] S. Wolfram (2020), “How We Got Here: The Backstory of the Wolfram Physics Project”, Stephen Wolfram Writings, writings.stephenwolfram.com/2020/04/how-we-got-here-the-backstory-of-the-wolfram-physics-project/.
[204] Wolfram Research (2019), Wolfram Function Repository, resources.wolframcloud.com/FunctionRepository/.
[205] S. Wolfram (2020), “Hands-On Introduction to the Wolfram Physics Project”, wolframcloud.com/obj/wolframphysics/Tools/hands-on-introduction-to-the-wolfram-physics-project.nb.